
1. The Brain of AI
At the heart of modern AI, powering everything from Large Language Models (LLMs) to cutting-edge AI Agents and other Artificial 
Intelligence (AI) systems, lies a revolutionary architecture known as the transformer. Essentially the 'brain' of these systems, the 
transformer is responsible for enabling key capabilities: storing information (Memory), processing language (Language), 
understanding meaning (Concepts), reasoning (Thinking), formulating possibilities (Hypotheses), making choices (Decisions), 
and communicating those choices (Speaking), all while continuously Learning to improve. To achieve this, it operates using its own 
unique system of communication, where its alphabet consists of units called tokens. In this guide, we will embark on a 
comprehensive deep dive into the transformer's components and workings, providing you with a foundational understanding of this 
transformative technology.

by Jason Guillauto



Transformer Architecture
Dive into the fundamental blocks of the transformer architecture in this section.

Functions/Component
s

Visual Representation Description

Memory: Multi-Layer 
Perceptron (MLP) 3 a 
feedforward neural network 
component that processes 
information through multiple 
layers of neurons.

A Multi-Layer Perceptron (MLP) is a type 
of neural network that's really good at 
making decisions. Think of it like a 
detective team. Each detective (neuron) 
looks for clues (features) in the data. 
They pass their findings to other 
detectives, who combine the clues to 
form a bigger picture. Eventually, the 
team reaches a conclusion: 'The suspect 
is guilty,' or in AI's case, 'This image is a 
cat.'

Language: Processed as 
discrete tokens representing 
words and subwords

In a transformer, language is handled by 
breaking it down into discrete units 
called tokens. These tokens can be 
words, sub-words, characters,or even 
parts of images or other data. Large 
Language Models (LLMs) often work 
with vocabularies of tens of thousands 
of tokens, allowing them to represent a 
wide range of language.

Concepts: Encoded as high-
dimensional numerical 
vectors in embedding space

The concepts in the transformer are 
encoded as high-dimensional numerical 
vectors in embedding space. These 
vectors carry semantic meaning and 
enable the model to understand 
relationships between different 
concepts. By representing concepts in 
this manner, the transformer can 
efficiently navigate and process complex 
information, enhancing its ability to 
perform a wide range of tasks 
accurately.

Thinking: Performed through 
layers of transformer blocks 
with self-attention 
mechanisms

Transformer blocks are the repeating 
units in the transformer architecture. 
They refine the model's understanding 
of language through self-attention, a 
technique that allows the model to focus 
on the relationships between words (or 
tokens) in a sentence, weighing each 
word's importance based on context.

Multi-Head Attention: At the bottom, 
this is where the model focuses on 
relationships between words in the 
input. The Q, K, and V represent 
Query, Key, and Value vectors, used 
to calculate attention.

Add & Norm: These are 'Add and 
Normalize' layers, used twice to 
stabilize the learning process.

Feed Forward: This is a neural 
network that further processes the 
information.

Self-Attention Self-attention is a crucial technique in 
the transformer architecture that allows 
the model to understand the 
relationships between words (or tokens) 
in a sentence. It works by having each 
word 'pay attention' to all other words, 
weighing their importance to its own 
meaning, similar to how you might focus 
on certain words in a sentence to 
understand its overall context.

The transformer block 
equation

Input: The original text or data that's 
fed into the transformer (e.g., "Je 
suis").

Embedding: Converting the input 
words (or "tokens") into numbers that 
the model can understand.

Queries: Represent what each word 
is "asking" or "looking for" in the 
other words.

Keys: Represent what each word 
"offers" as information to other 
words.

Values: The actual information each 
word provides.

Score: A calculation (often a dot 
product) that measures how relevant 
each word is to the others.

Divide by 8: A scaling step (using the 
square root of the key dimension, 
likely 8 here) to stabilize the scores.

Softmax: Converting the scores into 
probabilities (numbers that add up to 
1), showing how much "attention" 
each word should pay to others.

Softmax x Value: Weighting the 
"value" of each word based on the 
softmax probabilities.

Sum: Combining the weighted values 
to get the final representation of each 
word, incorporating context.

Hypotheses: Generated via 
linear projection layers that 
store the best embeddings in 
a hypotheses block

Linear projection is like stretching or 
rotating a picture. You're not changing 
the picture itself, but you're showing it in 
a different way that makes certain parts 
clearer. In AI, linear projection can be 
used to simplify complex data, like 
converting text into a format that the 
model can more easily process. It's 
similar to how a map projects the 3D 
Earth onto a 2D surface.

Decisions: Made through 
softmax probability 
distributions across possible 
tokens

Think of a group of people voting for 
their favorite color. Each color gets a 
'score' based on how many votes it 
received. Softmax is like a system that 
takes those scores and turns them into 
percentages. So, if red gets a lot of 
votes, it gets a high percentage (like 
70%), while blue gets fewer votes and a 
lower percentage (like 20%).

Speaking: Executed through 
an autoregressive loop that 
generates one token at a time

An autoregressive loop is a process 
where a model generates output step-
by-step, using its own previous output as 
input for the next step. It's how 
transformers 'speak' one word at a time.

Learning: Achieved through 
backpropagation by 
calculating loss and adjusting 
weights

Backpropagation is how AI models, 
including transformers, learn from their 
mistakes. It's like a student getting 
feedback on a test: the model makes a 
guess, sees how wrong it was, and then 
tweaks itself to be more accurate next 
time.



Glossary of Key Technical Terms
Reference guide for important concepts in transformer architecture

Term Definition

Transformer A neural network architecture based on self-attention 
mechanisms, designed to process sequential data without 
using recurrence or convolution.

Attention Mechanism A technique that allows the model to focus on different parts 
of the input sequence when producing an output, mimicking 
human cognitive attention.

Self-Attention A specific type of attention where the model relates different 
positions within a single sequence to compute a 
representation.

Embedding A numerical representation of data (like words or tokens) in a 
continuous vector space, capturing semantic relationships 
between items.

Softmax A mathematical function that converts a vector of numbers 
into a probability distribution, ensuring all values are between 
0 and 1 and sum to 1.

Backpropagation An algorithm for calculating gradients in neural networks, 
enabling the model to learn by adjusting weights based on 
prediction errors.

Linear Projection A mathematical operation that transforms vectors from one 
space to another using matrix multiplication, enabling 
dimension changes.

Token A basic unit of text in natural language processing, which 
could be a word, subword, or character depending on the 
tokenization method.

Autoregressive Loop A process where the model generates output sequentially, 
with each new token dependent on previously generated 
tokens.

MLP Multi-Layer Perceptron, a feedforward neural network 
component used in transformers to process information after 
attention mechanisms, consisting of linear layers with non-
linear activation functions.

Query In attention mechanisms, a representation of the current 
token used to determine its relationship with other tokens 
(keys) in the sequence, helping to calculate attention scores.

Vector A mathematical structure consisting of an ordered array of 
numbers, used in AI to represent data in multi-dimensional 
space where each dimension encodes specific features or 
attributes.



Visual representation of a transformer

SIMPLE

Inputs are tokenized: The input text is broken down into 
tokens.

1.

Tokens are embedded into vectors: Tokens are converted 
into numerical vector representations.

2.

Vectors are processed through transformer blocks using 
self-attention mechanisms.

3.

The processed vectors are transformed into scores for the 
next token in the linear projection layer.

4.

Tokens are generated (output) by sampling from the 
probability distribution produced by the softmax function. 
The softmax function converts the scores from the linear 
projection layer into probabilities.

5.

The output token is then fed back into the model as input 
for the next step (in decoder-only models). This describes 
the autoregressive loop.

6.

The process is repeated until the desired output length or a 
termination condition is met. This clarifies the iterative 
nature.

7.

COMPLETE

Understanding Input (Encoder - Left Side):1.

The process starts with the Language input "je suis 
étudiant", represented as Tokens.

These tokens are transformed into initial Concepts 
through Input Embedding and Positional Encoding, 
creating numerical Vectors capturing meaning and 
order.

The Encoder stack performs Thinking. Its Nx 
Transformer Block layers use Multi-Head Attention and 
Feed Forward networks to process these concepts, 
building a deep contextual understanding of "je suis 
étudiant".

Each transformer block contains Add & Norm 
components 3 critical stabilizing mechanisms that 
ensure efficient training. The "Add" implements residual 
connections, allowing information to flow directly 
through the network by adding the original input to the 
processed output. The "Norm" applies layer 
normalization, standardizing the outputs to control their 
scale, reducing training time and improving stability. 
Together, these components prevent 
vanishing/exploding gradients and maintain the 
network's ability to learn effectively across many layers.

Generating Output (Decoder - Right Side / Autoregressive 
Loop):

2.

The Speaking begins via the autoregressive loop on the 
right side, generating "I am a student" one token at a 
time.

It uses Output Embedding and Positional Encoding to 
create Concepts from the output generated so far 
(starting with an initial token).

The Decoder stack then engages in Thinking. Its Nx 
Transformer Block layers use Masked Multi-Head 
Attention (to focus on previous output tokens) and 
standard Multi-Head Attention (to consult the encoded 
input Concepts from the Encoder), along with Feed 
Forward networks.

After Thinking, the final Linear layer generates 
Hypotheses 3 outputting raw scores (logits) for every 
possible next English token.

Decisions are made via Softmax, converting scores 
into probabilities to select the most likely next token 
(e.g., 'I', then 'am', 'a', 'student').

This selected token is the OUTPUT for that step and 
feeds back into the loop, continuing the Speaking 
process until the translation is complete.



The Complete Transformer Architecture
The transformer architecture forms the neural backbone of modern Large Language Models through its elegant design of parallel 
processing and attention mechanisms. At its core, transformers consist of dual components: an encoder that processes input by 
converting tokens into contextual representations through self-attention and feed-forward networks, and a decoder that generates 
output through an autoregressive loop. The critical innovation of transformers lies in their multi-head attention mechanism, which 
allows models to simultaneously consider different aspects of context while processing language. This architecture is enhanced by 
residual connections and layer normalization that stabilize training across many layers. Together, these components enable LLMs to 
perform sophisticated language understanding and generation tasks, processing information bidirectionally to capture nuanced 
meanings, relationships, and contexts that were impossible with previous architectures. This fundamental design has revolutionized 
natural language processing, allowing models to scale to billions of parameters while maintaining computational efficiency.


