
 Vector & Embeddings

by Jason Guillauto



Embeddings in Practice
Effectively implementing embeddings requires two key components: a robust embedding strategy and an efficient vector database.

Embedding Strategies

Embeddings transform data into high-dimensional vector 
spaces where semantic relationships are preserved as 
geometric relationships.

Core Embedding Models

Word2Vec: Pioneered neural word representations (2013)

GloVe: Global vectors capturing word co-occurrence 
statistics

SWIVEL: Submatrix-wise vector embedding learner

BERT: Bidirectional encoder transformers that 
revolutionized contextual embeddings

Training Approaches

Continuous Bag of Words: Predicts a target word from 
surrounding context words by averaging their embeddings

Skip-Gram: Uses a center word to predict surrounding 
context words, excelling with rare words

Types of Embeddings

Multimodal embeddings: Represent different data types in 
shared space

Structured data embeddings: Created by ML models for 
tabular data

User/item embeddings: For recommendation systems

Graph embeddings: Represent network relationships

Advanced Training Techniques

Bidirectional deep neural networks for context awareness

Unsupervised pre-training on unlabeled text corpora

Subword tokenization to handle out-of-vocabulary words

Contrastive learning to differentiate similar vs. dissimilar 
items

Evaluation Framework

Precision: Percentage of retrieved items that are relevant

Recall: Percentage of relevant items that are retrieved

NDCG: Normalized Discounted Cumulative Gain measures 
ranking quality

Vector Databases

Vector databases provide efficient storage and retrieval of 
embeddings using similarity search algorithms.

Vector Search Fundamentals

Enables search on any type of data by comparing vector 
positions using:

Euclidean Distance: Measures direct spatial distance 
between vectors

Cosine Similarity: Compares the angles between vectors

Inner Product: Dot product calculation for similarity

Approximate Nearest Neighbor (ANN) 
Techniques

Methods that optimize vector search for large datasets:

Locality Sensitive Hashing: Hashes similar items to the 
same buckets

Tree-Based Methods: KD-trees and Ball Trees for spatial 
partitioning

HNSW: Hierarchical Navigable Small Worlds for efficient 
graph-based search

ScaNN: Scalable Nearest Neighbors for fast, efficient 
vector search

Vector Database Implementations

Specialized databases optimized for vector storage and 
retrieval:

Pinecone, Weaviate, Milvus: Purpose-built vector 
databases

Qdrant, Faiss: Optimized for high-performance similarity 
search

ChromaDB, LanceDB: Embedding-specific databases

PostgreSQL + pgvector: SQL databases with vector 
extensions

Retrieval Augmented Generation (RAG)

Enhancing LLM responses with relevant context from vector 
databases:

Choose an embedding strategy appropriate for your data1.

Select a vector database with ANN capabilities2.

Store embeddings of knowledge base3.

Retrieve relevant context based on query similarity4.

Augment prompts with retrieved information5.


