Vector & Embeddings

@ by Jason Guillauto



Embeddings in Practice

Effectively implementing embeddings requires two key components: a robust embedding strategy and an efficient vector database.

Embedding Strategies

Embeddings transform data into high-dimensional vector

spaces where semantic relationships are preserved as

geometric relationships.

Core Embedding Models

Word2Vec: Pioneered neural word representations (2013)

GloVe: Global vectors capturing word co-occurrence
statistics

SWIVEL: Submatrix-wise vector embedding learner

BERT: Bidirectional encoder transformers that
revolutionized contextual embeddings

Training Approaches

Continuous Bag of Words: Predicts a target word from
surrounding context words by averaging their embeddings

Skip-Gram: Uses a center word to predict surrounding
context words, excelling with rare words

Types of Embeddings

Multimodal embeddings: Represent different data types in
shared space

Structured data embeddings: Created by ML models for
tabular data

User/item embeddings: For recommendation systems

Graph embeddings: Represent network relationships

Advanced Training Techniques

Bidirectional deep neural networks for context awareness
Unsupervised pre-training on unlabeled text corpora
Subword tokenization to handle out-of-vocabulary words

Contrastive learning to differentiate similar vs. dissimilar
items

Evaluation Framework

Precision: Percentage of retrieved items that are relevant
Recall: Percentage of relevant items that are retrieved

NDCG: Normalized Discounted Cumulative Gain measures
ranking quality

Vector Databases

Vector databases provide efficient storage and retrieval of
embeddings using similarity search algorithms.

Vector Search Funhdamentals

Enables search on any type of data by comparing vector
positions using:

e Euclidean Distance: Measures direct spatial distance
between vectors
e Cosine Similarity: Compares the angles between vectors

e Inner Product: Dot product calculation for similarity

Approximate Nearest Neighbor (ANN)
Techniques

Methods that optimize vector search for large datasets:

o Locality Sensitive Hashing: Hashes similar items to the
same buckets

e Tree-Based Methods: KD-trees and Ball Trees for spatial
partitioning

e HNSW: Hierarchical Navigable Small Worlds for efficient
graph-based search

o ScaNN: Scalable Nearest Neighbors for fast, efficient
vector search

Vector Database Implementations

Specialized databases optimized for vector storage and
retrieval:

e Pinecone, Weaviate, Milvus: Purpose-built vector
databases

e Qdrant, Faiss: Optimized for high-performance similarity
search

e ChromaDB, LanceDB: Embedding-specific databases

o PostgreSQL + pgvector: SQL databases with vector
extensions

Retrieval Augmented Generation (RAG)

Enhancing LLM responses with relevant context from vector
databases:

1. Choose an embedding strategy appropriate for your data
2. Select a vector database with ANN capabilities

3. Store embeddings of knowledge base

4. Retrieve relevant context based on query similarity

5

. Augment prompts with retrieved information



